翻訳と辞書 |
Herz–Schur multiplier : ウィキペディア英語版 | Herz–Schur multiplier In the mathematical field of representation theory, a Herz–Schur multiplier (named after Carl S. Herz and Issai Schur) is a special kind of mapping from a group to the field of complex numbers. ==Definition== Let Ψ be a mapping of a group ''G'' to the complex numbers. It is a Herz–Schur multiplier if the induced map Ψ: ''N''(''G'') → ''N''(''G'') is a completely positive map, where ''N''(''G'') is the closure of the span ''M'' of the image of λ in ''B''(''ℓ'' 2(''G'')) with respect to the weak topology, λ is the left regular representation of ''G'' and Ψ is on ''M'' defined as :
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Herz–Schur multiplier」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|